Bet on any team and the UNDER with a starting pitcher who's ERA at the end of the game is below 4.2
http://sportsdatabase.com/mlb.py/query?text=SERA<4.2 and month&sort=query_header
<table style="width: 739px; height: 91px;" id="sortable_table" bgcolor="#ffffff" border="0" cellpadding="2"><thead><tr><th>Record
W-L (marg, % win)</th> <th>
$ On</th> <th>Over/Under
O-U-P (marg, % over)</th> <th>
$ Under </th> <th name="query_header">season</th> </tr></thead><tbody> <tr bgcolor="#ffffff"> <td align="center">303-187 (1.27, 61.8%)</td> <td align="center"> 10965 </td> <td align="center">196-272-21 (-0.64, 41.9%)</td> <td align="center"> 5515 </td> <td align="center">2009</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">1502-1068 (0.90, 58.4%)</td> <td align="center"> 31245 </td> <td align="center">1051-1401-116 (-0.20, 42.9%)</td> <td align="center"> 23210 </td> <td align="center">2008</td> </tr> <tr bgcolor="#ffffff"> <td align="center">1655-1216 (0.75, 57.6%)</td> <td align="center"> 32135 </td> <td align="center">1210-1505-152 (-0.01, 44.6%)</td> <td align="center"> 16150 </td> <td align="center">2007</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">1589-1324 (0.45, 54.5%)</td> <td align="center"> 14975 </td> <td align="center">1287-1482-141 (-0.00, 46.5%)</td> <td align="center"> 5855 </td> <td align="center">2006</td> </tr> <tr bgcolor="#ffffff"> <td align="center">1445-1067 (0.78, 57.5%)</td> <td align="center"> 23995 </td> <td align="center">982-1370-160 (-0.30, 41.8%)</td> <td align="center"> 28395 </td> <td align="center">2005</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">1308-931 (0.93, 58.4%)</td> <td align="center"> 23640 </td> <td align="center">937-1210-92 (-0.15, 43.6%)</td> <td align="center"> 17930 </td> <td align="center">2004</td></tr></tbody></table>
I found this trend using SERA<4.2 and season
However, it's fairly "duh" because if they pitch well you will have a good chance at winning, predicting who pitches well is the tough part.
Also, the majority of the money is made in April, because that's when the ERA is highly unstable.
http://sportsdatabase.com/mlb.py/query?text=SERA<4.2 and month&sort=query_header
<table style="width: 753px; height: 77px;" id="sortable_table" bgcolor="#ffffff" border="0" cellpadding="2"><thead><tr><th>Record
W-L (marg, % win)</th> <th>
$ On</th> <th>Over/Under
O-U-P (marg, % over)</th> <th>
$ Under </th> <th name="query_header">month</th> </tr></thead><tbody> <tr bgcolor="#ffffff"> <td align="center">169-110 (0.89, 60.6%)</td> <td align="center"> 5605 </td> <td align="center">112-163-4 (-0.63, 40.7%)</td> <td align="center"> 3900 </td> <td align="center">10</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">1219-1000 (0.55, 54.9%)</td> <td align="center"> 6260 </td> <td align="center">969-1136-111 (0.08, 46.0%)</td> <td align="center"> 5475 </td> <td align="center">9</td> </tr> <tr bgcolor="#ffffff"> <td align="center">1289-1022 (0.63, 55.8%)</td> <td align="center"> 13480 </td> <td align="center">1029-1176-106 (0.14, 46.7%)</td> <td align="center"> 3480 </td> <td align="center">8</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">1146-929 (0.65, 55.2%)</td> <td align="center"> 9460 </td> <td align="center">943-1038-93 (0.24, 47.6%)</td> <td align="center"> -95 </td> <td align="center">7</td> </tr> <tr bgcolor="#ffffff"> <td align="center">1186-887 (0.75, 57.2%)</td> <td align="center"> 19055 </td> <td align="center">846-1116-108 (-0.13, 43.1%)</td> <td align="center"> 17970 </td> <td align="center">6</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">1403-1014 (0.74, 58.0%)</td> <td align="center"> 29430 </td> <td align="center">963-1303-151 (-0.30, 42.5%)</td> <td align="center"> 23860 </td> <td align="center">5</td> </tr> <tr bgcolor="#ffffff"> <td align="center">1378-826 (1.27, 62.5%)</td> <td align="center"> 53000 </td> <td align="center">797-1295-109 (-0.81, 38.1%)</td> <td align="center"> 41610 </td> <td align="center">4</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">12-5 (2.00, 70.6%)</td> <td align="center"> 665 </td> <td align="center">4-13-0 (-0.85, 23.5%)</td> <td align="center"> 855 </td> <td align="center">3</td></tr></tbody></table>
Fading a pitcher's ERA after the game above 4.8 works as well, in addition to playing the OVER.
http://sportsdatabase.com/mlb.py/query?text=SERA>4.8 and season&sort=query_header
<table style="width: 752px; height: 120px;" id="sortable_table" bgcolor="#ffffff" border="0" cellpadding="2"><thead><tr><th>Record
W-L (marg, % win)</th> <th>
$ Against</th> <th>Over/Under
O-U-P (marg, % over)</th> <th>
$ Over </th> <th name="query_header">season</th> </tr></thead><tbody> <tr bgcolor="#ffffff"> <td align="center">195-312 (-1.31, 38.5%)</td> <td align="center"> 11220 </td> <td align="center">322-161-19 (2.13, 66.7%)</td> <td align="center"> 15265 </td> <td align="center">2009</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">525-950 (-1.53, 35.6%)</td> <td align="center"> 34870 </td> <td align="center">816-584-73 (1.31, 58.3%)</td> <td align="center"> 17945 </td> <td align="center">2008</td> </tr> <tr bgcolor="#ffffff"> <td align="center">513-890 (-1.34, 36.6%)</td> <td align="center"> 29805 </td> <td align="center">758-575-63 (1.27, 56.9%)</td> <td align="center"> 12445 </td> <td align="center">2007</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">537-833 (-1.09, 39.2%)</td> <td align="center"> 22735 </td> <td align="center">791-519-57 (1.65, 60.4%)</td> <td align="center"> 22590 </td> <td align="center">2006</td> </tr> <tr bgcolor="#ffffff"> <td align="center">552-901 (-1.34, 38.0%)</td> <td align="center"> 22595 </td> <td align="center">801-582-70 (1.20, 57.9%)</td> <td align="center"> 16610 </td> <td align="center">2005</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">693-1097 (-1.18, 38.7%)</td> <td align="center"> 29425 </td> <td align="center">994-716-80 (1.40, 58.1%)</td> <td align="center"> 20640 </td> <td align="center">2004</td></tr></tbody></table>
However, again is this useful because it's largely based on numbers in early months when we don't know how good/bad pitchers are?
http://sportsdatabase.com/mlb.py/query?text=SERA>4.8 and month&sort=query_header
<table style="width: 749px; height: 120px;" id="sortable_table" bgcolor="#ffffff" border="0" cellpadding="2"><thead><tr><th>Record
W-L (marg, % win)</th> <th>
$ Against</th> <th>Over/Under
O-U-P (marg, % over)</th> <th>
$ Over </th> <th name="query_header">month</th> </tr></thead><tbody> <tr bgcolor="#ffffff"> <td align="center">53-102 (-1.39, 34.2%)</td> <td align="center"> 4735 </td> <td align="center">85-65-5 (1.25, 56.7%)</td> <td align="center"> 1390 </td> <td align="center">10</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">456-677 (-1.05, 40.2%)</td> <td align="center"> 8720 </td> <td align="center">594-487-46 (1.11, 54.9%)</td> <td align="center"> 6605 </td> <td align="center">9</td> </tr> <tr bgcolor="#ffffff"> <td align="center">415-678 (-1.31, 38.0%)</td> <td align="center"> 17115 </td> <td align="center">567-478-48 (1.10, 54.3%)</td> <td align="center"> 4065 </td> <td align="center">8</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">446-642 (-0.98, 41.0%)</td> <td align="center"> 10645 </td> <td align="center">608-431-48 (1.42, 58.5%)</td> <td align="center"> 13650 </td> <td align="center">7</td> </tr> <tr bgcolor="#ffffff"> <td align="center">452-753 (-1.34, 37.5%)</td> <td align="center"> 22520 </td> <td align="center">687-470-47 (1.40, 59.4%)</td> <td align="center"> 17570 </td> <td align="center">6</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">611-1010 (-1.27, 37.7%)</td> <td align="center"> 33680 </td> <td align="center">874-655-85 (1.24, 57.2%)</td> <td align="center"> 15210 </td> <td align="center">5</td> </tr> <tr bgcolor="#ffffff"> <td align="center">579-1111 (-1.63, 34.3%)</td> <td align="center"> 52420 </td> <td align="center">1058-547-83 (1.99, 65.9%)</td> <td align="center"> 46535 </td> <td align="center">4</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">3-10 (-2.92, 23.1%)</td> <td align="center"> 815 </td> <td align="center">9-4-0 (3.42, 69.2%)</td> <td align="center"> 470 </td> <td align="center">3</td></tr></tbody></table>
It would be MUCH easier to figured this out and shoot it down if they simply pulled the ERA of the starter BEFORE the game in their query as opposed to AFTER the game.
http://sportsdatabase.com/mlb.py/query?text=SERA<4.2 and month&sort=query_header
<table style="width: 739px; height: 91px;" id="sortable_table" bgcolor="#ffffff" border="0" cellpadding="2"><thead><tr><th>Record
W-L (marg, % win)</th> <th>
$ On</th> <th>Over/Under
O-U-P (marg, % over)</th> <th>
$ Under </th> <th name="query_header">season</th> </tr></thead><tbody> <tr bgcolor="#ffffff"> <td align="center">303-187 (1.27, 61.8%)</td> <td align="center"> 10965 </td> <td align="center">196-272-21 (-0.64, 41.9%)</td> <td align="center"> 5515 </td> <td align="center">2009</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">1502-1068 (0.90, 58.4%)</td> <td align="center"> 31245 </td> <td align="center">1051-1401-116 (-0.20, 42.9%)</td> <td align="center"> 23210 </td> <td align="center">2008</td> </tr> <tr bgcolor="#ffffff"> <td align="center">1655-1216 (0.75, 57.6%)</td> <td align="center"> 32135 </td> <td align="center">1210-1505-152 (-0.01, 44.6%)</td> <td align="center"> 16150 </td> <td align="center">2007</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">1589-1324 (0.45, 54.5%)</td> <td align="center"> 14975 </td> <td align="center">1287-1482-141 (-0.00, 46.5%)</td> <td align="center"> 5855 </td> <td align="center">2006</td> </tr> <tr bgcolor="#ffffff"> <td align="center">1445-1067 (0.78, 57.5%)</td> <td align="center"> 23995 </td> <td align="center">982-1370-160 (-0.30, 41.8%)</td> <td align="center"> 28395 </td> <td align="center">2005</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">1308-931 (0.93, 58.4%)</td> <td align="center"> 23640 </td> <td align="center">937-1210-92 (-0.15, 43.6%)</td> <td align="center"> 17930 </td> <td align="center">2004</td></tr></tbody></table>
I found this trend using SERA<4.2 and season
However, it's fairly "duh" because if they pitch well you will have a good chance at winning, predicting who pitches well is the tough part.
Also, the majority of the money is made in April, because that's when the ERA is highly unstable.
http://sportsdatabase.com/mlb.py/query?text=SERA<4.2 and month&sort=query_header
<table style="width: 753px; height: 77px;" id="sortable_table" bgcolor="#ffffff" border="0" cellpadding="2"><thead><tr><th>Record
W-L (marg, % win)</th> <th>
$ On</th> <th>Over/Under
O-U-P (marg, % over)</th> <th>
$ Under </th> <th name="query_header">month</th> </tr></thead><tbody> <tr bgcolor="#ffffff"> <td align="center">169-110 (0.89, 60.6%)</td> <td align="center"> 5605 </td> <td align="center">112-163-4 (-0.63, 40.7%)</td> <td align="center"> 3900 </td> <td align="center">10</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">1219-1000 (0.55, 54.9%)</td> <td align="center"> 6260 </td> <td align="center">969-1136-111 (0.08, 46.0%)</td> <td align="center"> 5475 </td> <td align="center">9</td> </tr> <tr bgcolor="#ffffff"> <td align="center">1289-1022 (0.63, 55.8%)</td> <td align="center"> 13480 </td> <td align="center">1029-1176-106 (0.14, 46.7%)</td> <td align="center"> 3480 </td> <td align="center">8</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">1146-929 (0.65, 55.2%)</td> <td align="center"> 9460 </td> <td align="center">943-1038-93 (0.24, 47.6%)</td> <td align="center"> -95 </td> <td align="center">7</td> </tr> <tr bgcolor="#ffffff"> <td align="center">1186-887 (0.75, 57.2%)</td> <td align="center"> 19055 </td> <td align="center">846-1116-108 (-0.13, 43.1%)</td> <td align="center"> 17970 </td> <td align="center">6</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">1403-1014 (0.74, 58.0%)</td> <td align="center"> 29430 </td> <td align="center">963-1303-151 (-0.30, 42.5%)</td> <td align="center"> 23860 </td> <td align="center">5</td> </tr> <tr bgcolor="#ffffff"> <td align="center">1378-826 (1.27, 62.5%)</td> <td align="center"> 53000 </td> <td align="center">797-1295-109 (-0.81, 38.1%)</td> <td align="center"> 41610 </td> <td align="center">4</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">12-5 (2.00, 70.6%)</td> <td align="center"> 665 </td> <td align="center">4-13-0 (-0.85, 23.5%)</td> <td align="center"> 855 </td> <td align="center">3</td></tr></tbody></table>
Fading a pitcher's ERA after the game above 4.8 works as well, in addition to playing the OVER.
http://sportsdatabase.com/mlb.py/query?text=SERA>4.8 and season&sort=query_header
<table style="width: 752px; height: 120px;" id="sortable_table" bgcolor="#ffffff" border="0" cellpadding="2"><thead><tr><th>Record
W-L (marg, % win)</th> <th>
$ Against</th> <th>Over/Under
O-U-P (marg, % over)</th> <th>
$ Over </th> <th name="query_header">season</th> </tr></thead><tbody> <tr bgcolor="#ffffff"> <td align="center">195-312 (-1.31, 38.5%)</td> <td align="center"> 11220 </td> <td align="center">322-161-19 (2.13, 66.7%)</td> <td align="center"> 15265 </td> <td align="center">2009</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">525-950 (-1.53, 35.6%)</td> <td align="center"> 34870 </td> <td align="center">816-584-73 (1.31, 58.3%)</td> <td align="center"> 17945 </td> <td align="center">2008</td> </tr> <tr bgcolor="#ffffff"> <td align="center">513-890 (-1.34, 36.6%)</td> <td align="center"> 29805 </td> <td align="center">758-575-63 (1.27, 56.9%)</td> <td align="center"> 12445 </td> <td align="center">2007</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">537-833 (-1.09, 39.2%)</td> <td align="center"> 22735 </td> <td align="center">791-519-57 (1.65, 60.4%)</td> <td align="center"> 22590 </td> <td align="center">2006</td> </tr> <tr bgcolor="#ffffff"> <td align="center">552-901 (-1.34, 38.0%)</td> <td align="center"> 22595 </td> <td align="center">801-582-70 (1.20, 57.9%)</td> <td align="center"> 16610 </td> <td align="center">2005</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">693-1097 (-1.18, 38.7%)</td> <td align="center"> 29425 </td> <td align="center">994-716-80 (1.40, 58.1%)</td> <td align="center"> 20640 </td> <td align="center">2004</td></tr></tbody></table>
However, again is this useful because it's largely based on numbers in early months when we don't know how good/bad pitchers are?
http://sportsdatabase.com/mlb.py/query?text=SERA>4.8 and month&sort=query_header
<table style="width: 749px; height: 120px;" id="sortable_table" bgcolor="#ffffff" border="0" cellpadding="2"><thead><tr><th>Record
W-L (marg, % win)</th> <th>
$ Against</th> <th>Over/Under
O-U-P (marg, % over)</th> <th>
$ Over </th> <th name="query_header">month</th> </tr></thead><tbody> <tr bgcolor="#ffffff"> <td align="center">53-102 (-1.39, 34.2%)</td> <td align="center"> 4735 </td> <td align="center">85-65-5 (1.25, 56.7%)</td> <td align="center"> 1390 </td> <td align="center">10</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">456-677 (-1.05, 40.2%)</td> <td align="center"> 8720 </td> <td align="center">594-487-46 (1.11, 54.9%)</td> <td align="center"> 6605 </td> <td align="center">9</td> </tr> <tr bgcolor="#ffffff"> <td align="center">415-678 (-1.31, 38.0%)</td> <td align="center"> 17115 </td> <td align="center">567-478-48 (1.10, 54.3%)</td> <td align="center"> 4065 </td> <td align="center">8</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">446-642 (-0.98, 41.0%)</td> <td align="center"> 10645 </td> <td align="center">608-431-48 (1.42, 58.5%)</td> <td align="center"> 13650 </td> <td align="center">7</td> </tr> <tr bgcolor="#ffffff"> <td align="center">452-753 (-1.34, 37.5%)</td> <td align="center"> 22520 </td> <td align="center">687-470-47 (1.40, 59.4%)</td> <td align="center"> 17570 </td> <td align="center">6</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">611-1010 (-1.27, 37.7%)</td> <td align="center"> 33680 </td> <td align="center">874-655-85 (1.24, 57.2%)</td> <td align="center"> 15210 </td> <td align="center">5</td> </tr> <tr bgcolor="#ffffff"> <td align="center">579-1111 (-1.63, 34.3%)</td> <td align="center"> 52420 </td> <td align="center">1058-547-83 (1.99, 65.9%)</td> <td align="center"> 46535 </td> <td align="center">4</td> </tr> <tr bgcolor="#e6e6e6"> <td align="center">3-10 (-2.92, 23.1%)</td> <td align="center"> 815 </td> <td align="center">9-4-0 (3.42, 69.2%)</td> <td align="center"> 470 </td> <td align="center">3</td></tr></tbody></table>
It would be MUCH easier to figured this out and shoot it down if they simply pulled the ERA of the starter BEFORE the game in their query as opposed to AFTER the game.